

Vergleichende Bewertung der verschiedene Überwachungsstrategien zum Beweis der Abwesendheit Bovine Herpesvirus 1 in Milchviehbetriebe

Eine Fallstudie in RISKSUR project

Stendaler Symposium 2017

A. Veldhuis¹, I. Santman¹, B. Schauer², F. Waldeck¹, <u>J. Mars¹</u>, C. Staubach², G. van Schaik^{1,3} ¹GD Animal Health, ²Friedrich Loeffler Institut, ³Utrecht Universität

Comparative assessment of surveillance programs to prove freedom of bovine herpesvirus 1 in dairy herds in a disease-free and endemic situation

A case study within the RISKSUR project

A. Veldhuis¹, I. Santman¹, B. Schauer², <u>F. Waldeck¹</u>, J. Mars¹, C. Staubach², G. van Schaik^{1,3} ¹GD Animal Health, ²Friedrich Loeffler Institute, ³Utrecht University

Introduction

- Surveillance design framework (SDF) was developed in RISKSUR, an EU project.
 - For the design, documentation and redesign of surveillance systems
 - available at <u>https://surveillance-design-framework.wikispaces.com</u>
- Apply SDF on surveillance systems to demonstrate freedom of disease
- Case study: Bovine herpesvirus 1 (BoHV1) causes Infectious Bovine Rhinotracheitis (IBR)
- EU Member States can obtain official BoHV1-free status
- there are differences in Europe in the approach of eradication.

Compare epidemiological performance of EU & alternative surveillance approaches using scenario-tree models and cost-effectiveness analysis

Design	Component	Action
CONVENTIONAL		
(EU)		
ALTERNATIVE		

Design	Component	Action	
CONVENTIONAL (EU)	Intake	Blood >9 months twice	
ALTERNATIVE			

Design	Component	Action	
CONVENTIONAL (EU)	Intake	Blood >9 months twice	
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing	

Design	Component	Action	
CONVENTIONAL (EU)	Intake Monitoring	Blood >9 months twice Yearly blood >24 months	
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing	

Design	Component	Action
CONVENTIONAL	Intake	Blood >9 months twice
(EU)	Monitoring	Yearly blood >24 months
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing
	Monitoring	Monthly bulk milk testing (≥9/year)

ž

Design	Component	Action
CONVENTIONAL	Intake	Blood >9 months twice
(EU)	Monitoring	Yearly blood >24 months
	Purchase	No action
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing
	Monitoring	Monthly bulk milk testing (≥9/year)

Design	Component	Action
CONVENTIONAL	Intake	Blood >9 months twice
(EU)	Monitoring	Yearly blood >24 months
	Purchase	NA
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing
	Monitoring	Monthly bulk milk testing (≥9/year)
	Purchase	Blood + bulk milk testing

ž

Design	Component	Action
CONVENTIONAL	Intake	Blood >9 months twice
(EU)	Monitoring	Yearly blood >24 months
	Purchase	NA
ALTERNATIVE	Intake	Blood >12 months once + bulk milk testing
	Monitoring	Monthly bulk milk testing (≥9/year)
	Purchase	Blood + bulk milk testing
	clinical signs	Nasal swabs PCR

Scenario tree analysis (Martin et al., 2007)

Purpose:

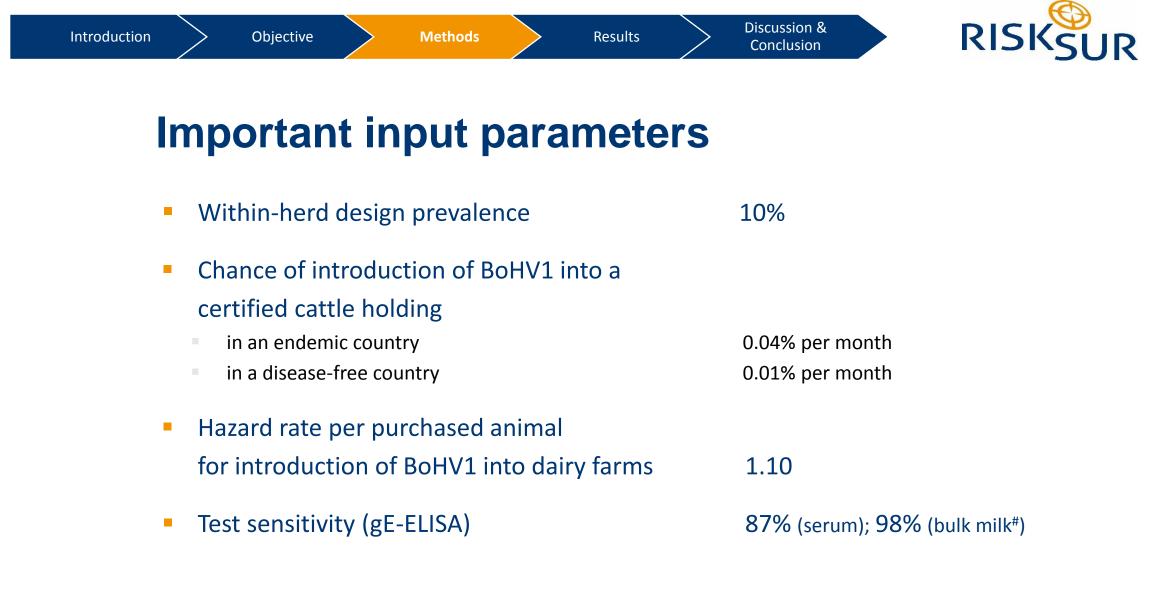
- 1. Calculate <u>sensitivity</u> of each surveillance design to *detect* an infected herd (intake)
- 2. Calculate <u>probability of freedom</u> from infection in a herd during 1 year of *monitoring* a herd's free status in both designs

ž

Scenario tree analysis (Martin et al., 2007)

Purpose:

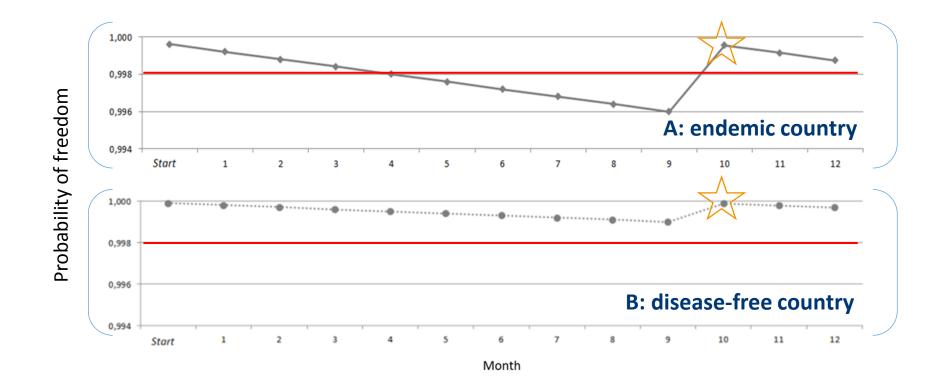
1. Calculate <u>sensitivity</u> of each surveillance design (and components thereof) to *detect* an infected herd


2. Calculate <u>probability of freedom</u> from infection during 1 year of <u>monitoring</u> a herd's free status in both designs

Monitoring freedom in different situations

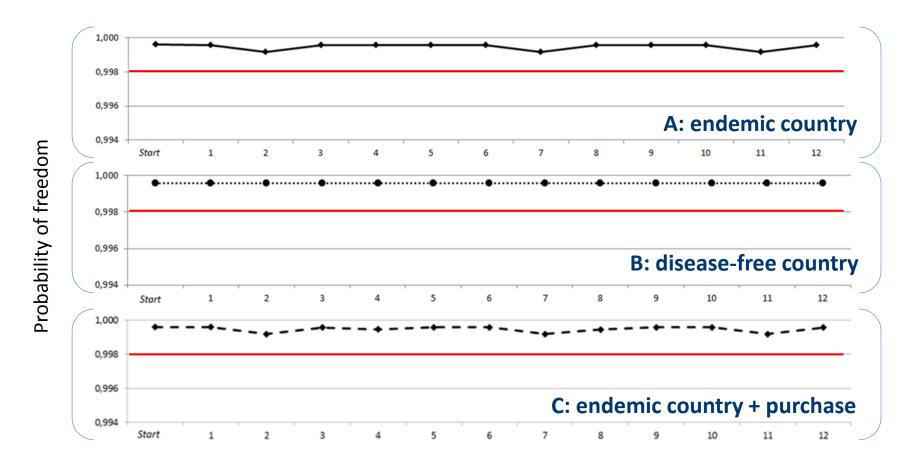
BoHV1-free cattle holding:

- CONVA.without purchase of animals from non-free holdings, assuming BoHV1 isALTendemic at country level
- CONVB.without purchase of animals from non-free holdings, in a situation in which the
country is free from BoHV1
- ALT C. that <u>purchases</u> animals that originate from non-free holdings, assuming BoHV1 is <u>endemic</u> at country level



[#]provided that the animal level prevalence in the group of lactating cows is 10% or more

Monitoring of free status in *conventional* design


Yearly serology on all lactating animals

Monitoring of free status in alternative design

Monthly bulk milk testing

Probability of freedom and cost-effectiveness of surveillance systems

A: endemic countryB: disease-free countryC: endemic + purchase

Probability of freedom and cost-effectiveness (monitoring)

Description	Mean probability of freedom per year (min-max)	Cost per holding per year (P5-P95) (€)
Conventional design		
Situation A	99.74 - 99.81	979 (352-1,863)
Situation B	99.94 - 99.95	979 (352-1,863)
Alternative design		
Situation A	99.95	476 (432-513)
Situation B	99.99	476 (432-513)
Situation C	99.89 - 99.95	804 (714-962)

A: endemic

B: disease-free

C: endemic + purchase

Conclusion & Discussion

- Monitoring free status:
 - Designs performed equally well in *disease-free* situation
 - Alternative approach most cost-effective

- In endemic situation, the mean probability of freedom was lower in conventional design
 - Low frequency of testing might hamper timeliness of detection
- Bulk milk test is 98% sensitive at within-herd prevalence of 10%
 - Performance of alternative design might be less effective compared to the conventional design at within-herd prevalence <10%

Take home message

- Assessment of various surveillance designs is useful towards optimizing animal health surveillance (eg. costs and sensitivity)
- for IBR: frequent bulk milk testing, in combination with clinical surveillance is a good and cost-effective alternative to yearly serology.

Thank you for your attention!

Questions?

a.veldhuis@gdanimalhealth.com

RISKSUR project ► www.fp7-risksur.eu

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement N° 310806.