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Summary

Animal surveillance systems need regular evaluation. We developed an easily

applicable simulation model of the German wild boar population to investigate

two evaluation attributes: the sensitivity and timeliness (i.e. the ability to detect a

disease outbreak rapidly) of a surveillance system. Classical swine fever (CSF) was

used as an example for the model. CSF is an infectious disease that may lead to

massive economic losses. It can affect wild boar as well as domestic pigs, and CSF

outbreaks in domestic pigs have been linked to infections in wild boar. Awareness

of the CSF status in wild boar is therefore vital. Our non-epidemic simulation

model is based on real data and evaluates the currently implemented German

surveillance system for CSF in wild boar. The results show that active surveillance

for CSF fulfils the requirements of detecting an outbreak with 95% confidence

within one year after the introduction of CSF into the wild boar population. Nev-

ertheless, there is room for improved performance and efficiency by more homo-

geneous (active and passive) sampling of wild boar over the year. Passive

surveillance alone is not sufficient to meet the requirements for detecting the

infection. Although CSF was used as example to develop the model, it may also be

applied to the evaluation of other surveillance systems for viral diseases in wild

boar. It is also possible to compare sensitivity and timeliness across hypothetical

alternative or risk-based surveillance strategies.

Introduction

Animal health surveillance has to be reliable and informa-

tive. To ensure that implemented surveillance strategies are

effective, the regular evaluation of such measures is advis-

able. When used for demonstration of freedom from disease

sensitivity and the ability to detect an outbreak rapidly

(timeliness) are attributes of surveillance systems that need

regular evaluation (Drewe et al., 2013). In this study, sensi-

tivity is defined as the probability of detecting a disease at a

given level (95%) of statistical confidence if its prevalence

exceeds a defined limit (5%) (Drewe et al., 2013). For time-

liness, we used the definition given by Hoinville et al. (2013)

that timeliness can be defined as the time between the intro-

duction of an infectious agent and disease detection.

The aim of this study was to develop a simulation model

to determine the sensitivity and the timeliness of different

surveillance strategies for infectious diseases in wild boar.

Similar to the study of Sonnenburg et al. (2016), where the

possible impact of changes in sample size and sampling

intervals on the probability of classical swine fever (CSF)

detection was modelled, the present model is non-epi-

demic. In such a non-epidemic model, the spread of disease

is not taken into account, but a static snapshot of an epi-

demic is considered. Additionally, a non-epidemic simula-

tion is used to evaluate surveillance and not control

strategies, as described in previous studies (Klinkenberg

et al., 2005; Boklund et al., 2009; Thulke et al., 2011; Lange

et al., 2012; Ribbens et al., 2012; Durr et al., 2013; Stahnke

et al., 2013).

Classical swine fever (CSF) is a contagious viral disease

that can affect all suid species (Kaden et al., 2005; Chander

et al., 2014). The occurrence of CSF in a domestic pig pop-

ulation can inflict huge economic losses, which makes it
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necessary to prevent the introduction of this virus into dis-

ease-free areas (Saatkamp et al., 1997; Meuwissen et al.,

1999; Chander et al., 2014). Fritzemeier et al. (2000) found

that CSF outbreaks in commercial pig holdings are often

due to direct or indirect contact with infected wild boar. It

is therefore vital to be aware of the disease status of wild

boar populations, which is only possible through effective

surveillance.

The strategy currently implemented in Germany for the

surveillance of CSF in wild boar was used as a baseline for

the model generated in this study. The strategy was devel-

oped to fulfil the requirements of Commission Decision

2002/106/EC of 1 February 2002; that is, the sample size for

active surveillance required to demonstrate that the wild

boar population is free from CSF should be sufficient to

detect a seroprevalence of 5% in the population with ≥95%
probability. According to Cannon and Roe (1982), at least

59 samples have thus to be examined per year and per

defined geographical unit. In Germany, the geographical

unit is the district (‘Landkreis’ or ‘Kreis’) within a federal

state. It is also recommended by Commission Decision

2002/106/EC that both active and passive surveillance

strategies should be concurrently implemented. All wild

boar found dead, shot when displaying overt clinical signs

of disease (termed ‘shot sick’) or involved in road traffic

accidents should thus also be sampled and examined for

CSF.

To parametrize the model, we used hunting, infection

and population data from two federal states of Germany.

These data served as a generic example of wild boar disease

and may be replaced by any similar data. This could be data

obtained from CSF surveillance in wild boar under differ-

ent external circumstances or originating from surveillance

for other infectious wild boar diseases.

Materials and Methods

Data background (input files) for the simulation model

Figure 1 gives an overview of the model structure and the

input files.

Regional information

The modelled study region had an assumed size of

500 km², which reflects the average size of hunting areas in

each of the two federal states of Germany (Rhineland-Pala-

tinate and Mecklenburg-Western Pomerania), from where

data were obtained to parametrize the model. As variation

in the estimates of wild boar population size and density

may influence the performance of surveillance, we specified

nine different ‘regional information’ input files. The data

used as estimates for wild boar populations and wild boar

density are shown in Table 1. The estimations were justi-

fied by published information on wild boar density (Kaden

et al., 2002; Ebert et al., 2012).

Population structure

To assign an age and gender to each animal, the input file

‘population structure’ was created on the basis of data pub-

lished by Von Rueden (2006). The data originated from the

Fig. 1. Structure of the simulation model to estimate sensitivity and timeliness using the currently implemented surveillance strategy for classical

swine fever in wild boar in Germany. Solid boxes describe the model flow. Dotted boxes represent input files. The dashed box states the output vari-

ables. *population group: number of individuals in each of the combinations of age classes, gender and cause of death.
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‘Eifel’, a region in Rhineland-Palatinate, Germany, and

were collected between 1999 and 2004. The region had been

part of a CSF surveillance area such that data for all hunted

wild boar were recorded.

In the study of Von Rueden (2006), only the age and sex

distributions of actively hunted animals were described. It

was assumed that this distribution does not differ signifi-

cantly within the subpopulation sampled by passive surveil-

lance, and we used these data to determine the structure of

the study population for active as well as for passive surveil-

lance (Table 2).

For the proportions of animals in the different categories

for causes of death, the estimates based on surveillance data

of the federal state of Rhineland-Palatinate were used

(Table 3). The data originated from the CSF wild boar

surveillance database (http://public.csf-wildboar.eu/Defaul-

t.aspx), which was collated during the period from 2007

until 2014. Based on these data, it was concluded that more

wild boar were involved in road traffic accidents than

found dead and that the proportion of wild boar shot sick

is very small.

Infection

To estimate the serological and virus prevalence in the sim-

ulated infected area, data from the German federal state of

Mecklenburg-Western Pomerania were used. Here, CSF

had been present for almost two years (from 1993 to 1994)

before vaccination started (Kaden et al., 2002). The data

were provided by the State Office of Agriculture, Food

Safety and Fishery of the federal state of Mecklenburg-Wes-

tern Pomerania. The processed data set used for the data

file ‘infection’ consisted of 17 492 records and included

data from January 1993 to December 1994. Seroprevalence

estimates were calculated on a monthly basis. An 11-month

period from September 1993 to July 1994 was chosen and

interpolated using the R function spline. Interpolation
was carried out to control for the monthly fluctuations in

detection by obtaining an estimate for a smooth increase of

the seroprevalence (Table 4). The value of the starting

month was set to 5.0% to simulate an outbreak, which

would require detection with a probability of 95% by the

current surveillance mechanisms according to Commission

Decision 2002/106/EG. Due to a lack of CSF virus or gen-

ome detection data, we assumed that animals that serocon-

verted had been virologically positive one month before

seroconversion. Therefore, the increase in virus prevalence

from 1 month to the next was estimated as the increase in

seroprevalence detected 1 month later. The age and sex dis-

tribution of the animals marked as serologically positive is

shown in Table 5.

Active and passive surveillance

To generate the input file ‘active and passive surveillance’,

data from 24 districts of the German federal state of Rhine-

land-Palatinate were used. Information from the hunting

years of 2003/2004 to 2010/2011 was included. Each hunt-

ing year starts on 1 April and lasts until the 31 March of the

following year. Data on the number of actively hunted wild

boar were provided on a monthly basis for each district.

Initially, mean values for each month were calculated from

the monthly data for the given years for each district. Sec-

ondly, hunting data were averaged for each month over the

24 districts and a percentage of hunted out of the estimated

wild boar population was calculated for each month

(Table 6).

Data on wild boar found dead (animal data available as a

result of passive surveillance) were provided on a yearly

Table 1. Overview of the nine different assumed wild boar populations

and the corresponding wild boar densities with regard to the chosen

study area of 500 km² used in the simulation study

Scenario

Assumed population within

an area of 500 km²

Assumed

density per km²

1 375 0.75

2 500 1

3 750 1.5

4 1 000 2

5 1 500 3

6 2 000 4

7 3 000 6

8 4 000 8

9 5 000 10

Table 2. Assumed population structure for wild boar available for

active and passive surveillance as used in the simulation study. The data

originated from the ‘Eifel’, a region in Rhineland-Palatinate, Germany,

and were collected from 1999 until 2004

Age (year) Gender Percentage

0–1 Female 28

Male 32

1–2 Female 15

Male 14

>2 Female 6

Male 5

Table 3. Assumed distribution of the proportion of animals within the

four categories of the cause of death with regard to the simulated pop-

ulation. The distribution is based on surveillance data of the federal

state of Rhineland-Palatinate. The data originated from the Classical

Swine Fever wild boar surveillance database and comprised a period

from 2007 until 2014

Hunted

Found

dead Shot sick

Road traffic

accident

Percentage of

simulated population

95.7 1 0.3 3
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basis for each of the districts for the hunting years 2005/

2006 to 2008/2009. Values for the given years were averaged

for each district. For each district, we divided the number

of wild boar found dead by the population estimate per dis-

trict. Averaging this relation leads to a proportion of 0.3%

of the estimated wild boar population found dead. Popula-

tion estimates were taken from studies of the Research

Institute for Forest Ecology and Forestry of Rhineland-

Palatinate (Ebert et al., 2012).

Simulation model

A wild boar population was generated in the simulated

study region. The number of individuals in this region was

given by the input file ‘regional information’ (Table 1).

Each wild boar belonged to (i) one of three age classes (0–
1, 1–2, >2 years), (ii) a gender category (male, female) and

(iii) one of the four categories of the cause of death

[hunted, shot sick, found dead, road traffic accident

(RTA)] (Tables 2 and 3). Hunted animals were used to

investigate active surveillance, whereas the other three cate-

gories pertaining to cause of death were used to investigate

passive surveillance strategies. The age, gender and cause-

of-death distribution of the generated population is given

in the input file ‘population structure’.

To compare seasonal variations within a year, we gener-

ated an ongoing transmission lasting for 12 months, which

started within the study area in each of the 12 months of a

year. To this end, individual animals were marked as

seropositive and virus positive according to the numbers

provided by the input file ‘infection’ (Table 4).

To simulate hunting, wild boar were randomly chosen

for each month according to the proportion of hunted wild

boar provided in the input file ‘active and passive surveil-

lance’ (Table 6). The number of wild boar found dead

(yearly estimates) was equally distributed over 12 months,

and individuals were again randomly chosen and marked

as found dead.

In the last simulation step, current surveillance strategies

were applied. For active surveillance, 59 samples were ran-

domly chosen within 12 months from all individuals that

had been marked as hunted. Three scenarios were calcu-

lated as follows: (i) all samples were examined serologically,

(ii) all samples were examined virologically, and (iii) all

samples were examined serologically and virologically. For

passive surveillance, all samples originating from animals

marked as found dead, shot sick or involved in RTA were

investigated virologically. The sensitivity and specificity of

the diagnostic tests were assumed as perfect.

If a wild boar was marked as seropositive in the simula-

tion matrix and hunted in the same or in a subsequent

month, it was still regarded as seropositive after its death.

We assumed that antibodies were detectable for lifeT
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(European Food Safety Authority, 2009; World Organisa-

tion for Animal Health, 2014). For individuals marked as

virus positive, a virological diagnosis was only considered

possible within the same month as CSF virus is only detect-

able for 1–3 weeks post-infection (European Food Safety

Authority, 2009; Weesendorp et al., 2010).

Detection probability and timeliness of the currently

implemented surveillance strategy were then estimated and

represent the output variables of the simulation study.

To calculate the detection probability, the number of

simulation repetitions, in which the infection was detected

within 12 months, was recorded for each starting month of

the infection chain. The sensitivity was calculated for three

different scenarios of the currently used active surveillance

scenario (i.e. random sampling of 59 wild boar per year):

(i) serological (ii) virological (detection of the virus, its

antigens or genome) and (iii) serological and virological

examination of samples. For passive surveillance (i.e. sam-

pling of all wild boar found dead, shot sick or involved in a

RTA), only the virological examination of samples was sim-

ulated.

A timeliness score was calculated on the basis of all simu-

lation runs in which the infection was detected within

12 months after the start of the infection chain. For every

start month, the number of simulation runs, in which the

infection was detected within the month of disease intro-

duction or the 11 following months, was recorded. As early

detection is preferable, we adjusted for late detection by

weighting early detection with higher scores. A weighted

average score was calculated for each starting month of the

infection chain. Detection within one month of infection

was weighted by 12, the second month by 11 and so forth

until detection after 12 months, which was weighted by 1.

This weighted score was used to compare the timeliness of

detection for outbreaks starting in different months. The

same weighted timeliness score was calculated for each of

the three active surveillance scenarios, that is (i) serological,

(ii) virological and (iii) both serological and virological

examination. The timeliness score was also calculated for

the virological examination of samples resulting from pas-

sive surveillance.

Calculations and graphs were generated using the soft-

ware R (www.r-project.org). Random sampling was per-

formed using the R function sample. The R script can be

obtained from the authors upon request.

Sensitivity analyses

We tested the influence of different population estimates

(Table 1), different values for the increase of seroprevalence

and varied estimates for active and passive surveillance on

the outcome variables. The estimated seroprevalence was

altered by changing the gradient of the prevalence and by

varying the start prevalence from 0% to 7%, and the num-

ber of hunted wild boar was increased and decreased by

50%, respectively.

Results

A simulation model was developed to determine sensitivity

and timeliness of a surveillance system. CSF in wild boar

was used as an example, and the application of the model

led to the following results.

Sensitivity

Active surveillance

For the currently used surveillance strategy (examination of

at least 59 wild boar samples originating from active

surveillance per year and defined geographical unit), we

Table 5. Distribution of the serological test results from Mecklenburg-Western Pomerania with regard to age and sex classes in %; neg: negative

serological test results, pos: positive serological test results. The processed data set consisted of 17 492 records and included data from January 1993

to December 1994

Age class 1 (0–1 year) Age class (1–2 years) Age class 3 (> 2 years)

Female Male Female Male Female Male

neg pos neg pos neg pos neg pos neg pos neg pos

23.5 1.3 24.7 1.3 14.7 2.7 17.9 2.4 2.7 1.5 5.5 1.8

Table 6. Percentage of animals, which were actively hunted in the individual months based on real hunting data of the federal state of Rhineland-

Palatinate. Data from 24 districts of this federal state of Germany were used, and information from the hunting years 2003/2004 to 2010/2011 was

included

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

% 12.8 5.9 5.3 3.6 6.5 6.6 6.8 7.1 6.5 8.4 16.1 14.4
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simulated (i) serological, (ii) virological and (iii) both sero-

logical and virological examinations of 59 randomly chosen

samples per year for all tested wild boar population esti-

mates (Table 1). Testing samples by both methods (serol-

ogy and virology) led to high values for the detection

probability, ranging from 99.9% to 100.0%. Serological

investigations of 59 randomly chosen samples per year led

to the same range of detection probabilities, but slightly

more cases resulted in a detection probability of 99.9%.

Simulating only virological examination of samples led to

detection probabilities ranging from 58.4% to 71.9%. The

minimum, maximum and average values for this scenario

for different wild boar population estimates were calculated

on basis of the results for the 12 different starting months

and are shown in Table 7.

Passive surveillance

The size of the wild boar population and the detection

probability showed a directly proportional relationship

when all samples originating from wild boar which were

found dead, shot sick or involved in RTA, were analysed

(Fig. 2). The values ranged from 1.3% to 35.3%

(mean = 14.4%) and were thus clearly lower compared to

the values resulting from active surveillance scenarios.

Timeliness

Active surveillance

We calculated the weighted timeliness score of each surveil-

lance strategy and for each starting month of the infection

chains. Afterwards, minimum, maximum and mean of the

timeliness scores over the starting months of the infection

chains were calculated for each surveillance scenario

(Table 8). The combination of serological and virological

examinations of 59 randomly chosen samples per year led

to the highest values for timelines. When new infections

started in October, November, December or January, the

timeliness resulted in higher values; that is, infections were

detected faster (Fig. 3). For active surveillance scenarios,

timeliness showed the highest variability in the starting

months when samples were examined only virologically

(Fig. 3). A significant influence of the population estimates

on the values for timeliness was not detected.

Passive surveillance

With an average weighted score of 0.085, passive surveil-

lance resulted in the lowest values for timeliness (Table 8).

However, the variation across the starting months of infec-

tion was less pronounced when compared to active surveil-

lance scenarios (Fig. 3).

Sensitivity analyses

The model showed a stable behaviour regarding the out-

come variables while performing sensitivity analysis by

changing population estimates, the gradient of seropreva-

lence increase and values for active and passive surveillance

(data not shown).

Discussion

A simulation model was developed to determine the detec-

tion probability and the period of time that it would take to

detect CSF infection (timeliness). The advantage of our

newly developed simulation model is its non-epidemic

character. We avoid the uncertainty, which goes hand in

hand with the use of epidemic spread models (Thulke et al.,

2011; Lange et al., 2012; Durr et al., 2013). Instead of using

assumptions about the epidemiological characteristics of an

outbreak (e.g. contact rates, transmission routes and infec-

tiousness), which are often difficult to define exactly, our

model is based on real surveillance data. Most of the exist-

ing simulation models regarding CSF evaluate the impact of

control measures in the case of an outbreak (Boklund et al.,

2009; Thulke et al., 2011; Ribbens et al., 2012). By contrast,

our model evaluates surveillance strategies that are imple-

mented to demonstrate freedom from disease. Sonnenburg

et al. (2016) also simulated different surveillance

approaches for CSF in wild boar in times of disease free-

dom; however, they only focused on detection probability.

CSF surveillance

When examination of samples by serology alone was simu-

lated, it was shown that detection probability and timeli-

ness were not significantly different to approaches in which

both virological and serological methods were employed.

These results suggest that evaluating samples by serology is

sufficient in times of disease freedom and can thus save

Table 7. Minimum, maximum and average detection probabilities for

simulation of virological investigation of 59 randomly chosen samples

per year. The values are given for the corresponding wild boar popula-

tion estimates

Wild boar population

estimates (number

of wild boar) Minimum (%) Maximum (%) Mean (%)

375 66.2 71.9 68.8

500 61.3 69.4 66.3

750 59.2 69.8 65.8

1 000 60.1 69.9 65.8

1 500 60.9 69.1 65.0

2 000 61.2 69.2 65.0

3 000 58.4 69.8 64.5

4 000 59.9 68.6 63.8

5 000 60.0 69.9 64.0
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resources. This approach is also consistent with the current

EU regulations (Decision of the Commission of the 1st of

February 2002/106/EG), where the serological examination

of all required samples of actively hunted wild boar is rec-

ommended. Performing only virological investigations,

however, is not advisable due to their low sensitivity and

timeliness of detection. These results are probably due to

the short time for which virus is detectable in blood and tis-

sue samples (European Food Safety Authority, 2009; Wee-

sendorp et al., 2010). By contrast, antibodies can be

detected lifelong in an infected animal (European Food

Safety Authority, 2009; World Organisation for Animal

Health, 2014).

Sensitivity

Active surveillance

The detection probability of a newly introduced CSF virus

infection within one year using the currently implemented

surveillance system for CSF in wild boar reached almost

100%. This result shows that sampling on the basis of sam-

ple size calculations by Cannon and Roe (1982) yields satis-

factory detection probabilities in a field situation. However,

we simulated random sampling, which does not corre-

spond to reality, where sampling usually depends on hunt-

ing, which is not a random process. Accordingly, it can be

assumed that the detection probabilities are probably lower

in a real surveillance setting. Nevertheless, the expected

hunting bias could also be an advantage. Due to the high

infectivity of CSF virus (Artois et al., 2002; Moennig,

2015), the prevalence in areas with a high population den-

sity is expected to be higher. Therefore, the probability of

shooting more infected animals in a wild boar-dense area is

much higher (Zanardi et al., 2003; Moennig, 2015).

Passive surveillance

We found a directly proportional relationship between the

wild boar population density and the detection probability.

This result reflects the effect of different wild boar popula-

tion densities which is likely to affect the number of

Fig. 2. Detection probabilities of the simula-

tion of virological investigation of samples

resulting from passive surveillance for different

wild boar population estimates from 375 to

5 000 and for all starting months of infection.

Table 8. Minimum, maximum and average timeliness for the simulated active and passive surveillance scenarios

Active surveillance
Passive surveillance

Serological examinations Virological examinations Serological and virological examinations Virological examinations

Minimum 0.113 0.078 0.118 0.053

Maximum 0.136 0.111 0.141 0.112

Average 0.125 0.096 0.129 0.085
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animals found through passive surveillance as a fixed pro-

portion was assumed to be sampled. Durr et al. (2013)

found that for commercial pig holdings, the efficiency of

surveillance is higher in areas with a large pig population.

Nevertheless, the detection probability by passive surveil-

lance is much lower when compared to active surveillance

scenarios.

Timeliness

Active surveillance

When new infections started in October, November,

December or January, they were detected faster (Fig. 3).

This can be explained by the hunting season. During the

hunting season, more samples were investigated, and

therefore, infection was detected much faster. In contrast,

timeliness showed considerably lower scores if the infec-

tion began in the months of February and March. This is

due to the very small sample size obtained in the subse-

quent months. Based on these results, it can be concluded

that increasing the number of samples throughout the

year would most probably lead to overall better timeli-

ness.

We demonstrated that combining serological and viro-

logical investigations is especially beneficial with regard to

improving timeliness (Fig. 3). However, when sets of 59

samples per spatial unit were examined by serology

only, we showed that the currently applied surveillance

achieved the results required to demonstrate freedom

from disease.

(a) Active surveillance − serological investigation
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(c) Active surveillance − serolog. and virolog. investigation
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(b) Active surveillance − virological investigation
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(d) Passive surveillance − virological investigation
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Fig. 3. Results of timeliness calculations for different population estimates for each starting month of infection for (a) serological investigation of 59

randomly chosen samples per year within the study area, (b) virological investigation of 59 randomly chosen samples per year within the study area,

(c) serological and virological investigation of 59 randomly chosen samples per year within the study area and (d) virological investigation of samples

resulting from passive surveillance.

© 2016 Blackwell Verlag GmbH • Transboundary and Emerging Diseases.8

Sensitivity and Timeliness of Surveillance Strategies J. Schulz et al.



Passive surveillance

The wild boar population size and structure had no signifi-

cant influence on the scores for timeliness. This may be

explained by the fact that these values reflect the proportion

of CSF-positive wild boar per month after the start of the

transmission and are therefore independent of the popula-

tion size.

Our study showed that passive surveillance alone would

not be sufficient to meet the requirements of Commission

Decision 2002/106/EG for infection detection. Although

limited passive surveillance data were available for this

study, these findings confirm the results of previous studies

(Comin et al., 2012; Sonnenburg et al., 2016), which found

that passive surveillance on its own is not enough to detect

a disease outbreak reliably.

In general, the results of sensitivity and timeliness analy-

ses showed that passive surveillance efforts may be

improved. This might be possible through the implementa-

tion of financial incentives for hunters or the application of

easier sampling methods. It would be reasonable to expand

the evaluation of CSF surveillance in wild boar by including

further attributes, for example the acceptability of the

surveillance strategies by hunters. An economic evaluation

would complete such a study.

Limitations and opportunities of the simulation model

Because all results were subject to the same errors in the

performed analyses, we did not estimate exact errors in our

study but compared relative performance. The number of

iterations was set to 1000 as it led to sufficiently stable aver-

aged results. Increasing the number of iterations would very

likely have a negligible effect on the averaged values.

When interpreting the results, it has to be taken into

consideration that the model is based on real data from

CSF surveillance in wild boar of two federal states of Ger-

many. Accordingly, the results refer to the conditions in

these two federal states and do not necessarily hold a uni-

versal validity. In areas with different hunting traditions,

environments or other wild boar population sizes or struc-

tures, the model parameters would have to be adapted and

analysed correspondingly. Obtaining reliable data for pop-

ulation sizes in wildlife is difficult. It would be useful to

implement more accurate methods for population esti-

mates to improve the results of the model. Ebert et al.

(2012) estimated the wild boar population density in some

areas of Germany as >11 animals/km², whereas data from

hunting bag (number of animals shot in a defined time per-

iod) analyses resulted in estimate of 2 animals/km² (Kaden
et al., 2002). However, by varying the population density,

we took these uncertainties into account.

Assuming that the numbers of wild boar found dead was

equally distributed across all months was necessary because

of the lack of monthly data. It is likely that more wild boar

will be found dead in the hunting season and that sensitiv-

ity and timeliness decrease, if a CSF outbreak starts in early

spring after the end of the hunting season.

To check the influence of other individual variables and

their parameter range on the model, further sensitivity

analyses were conducted. This was carried out in a compre-

hensive evaluation study (K. Schulz, M. Peyre, B. Schauer,

J. Sonnenburg, C. Calba, B. H€asler, C. Staubach, and F. J.

Conraths, in preparation).

The simulated size of the district was arbitrarily defined

as 500 km². As shown by Sonnenburg et al. (2016), the

informative value of a surveillance strategy depends on the

chosen time period of sampling and on the size of the area.

Therefore, our model may be easily adapted to other sce-

narios using other data sets.

The currently implemented surveillance strategy for CSF

in wild boar stipulates a sample size of at least 59 samples

per geographical unit and year. This number arises from

the Commission Decision 2002/106/EG, which states that

the sample size should be large enough so that a seropreva-

lence of 5% can be detected with a 95% confidence (Can-

non and Roe, 1982). However, these calculations are valid

for a scenario, in which an infinite wild boar population

and the use of perfect laboratory tests are assumed. Neither

of these assumptions applies in reality. It can therefore be

expected that incorporating the knowledge of a finite popu-

lation will result in higher detection probabilities or lead to

a reduction in sample size without loss of information.

Taking realistic data on test performance into account

could result in a detection probability of lower than 95% if

a sample size of 59 is maintained. However, the sensitivity

and the specificity of the usually used tests (ELISA and

virus neutralization test) for CSF are described to be above

98% (Langedijk et al., 2001; European Food Safety Author-

ity, 2009). Therefore, the effect is likely to be small. Data on

test performance were not considered in our model. The

true uncertainty of the model outcome may therefore be

higher than expected, as potential false-positive or false-

negative test results have not been taken into account. The

effect of this simplification is minimal (test sensitivity

approximately 98%), consistent across surveillance strate-

gies and therefore has a negligible effect on comparative

performance.

Simulation models provide a sound method to evaluate

the sensitivity and timeliness of a surveillance strategy in

the absence of outbreak data. It is also possible to compare

these values across different surveillance strategies. A

broader evaluation study has been conducted, where a

total of 69 different surveillance strategies for CSF in wild

boar were developed and investigated (K. Schulz, M. Peyre,

B. Schauer, J. Sonnenburg, C. Calba, B. H€asler, C. Stau-

bach, and F. J. Conraths, in preparation).
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The current study used CSF as an example to build a

model of surveillance strategies and evaluate their efficacy.

The model can be readily used as a template to investigate

the two evaluation attributes of surveillance strategies for

several diseases. Only the data basis would need adaptation

with regard to the disease of interest. In contrast to other

models, which are usually tailored towards the specific dis-

ease characteristics, only real surveillance data for the rele-

vant disease are needed as input for our model. This allows

the easy adaptation of the model to other diseases of wild

boar (e.g. African swine fever or Aujeszky’s disease).
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