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Abstract 

Surveillance systems produce data which, once analysed 

and interpreted, support decisions regarding disease 

management. While several performance measures for 

surveillance are in use, no theoretical framework has been 

proposed yet with a rationale for defining and estimating 

effectiveness measures of surveillance systems in a generic 

way. An effective surveillance system is a system whose 

data collection, analysis and interpretation processes lead 

to decisions that are appropriate given the real disease 

status of the target population. Accordingly, we developed 

a framework accounting for sampling, testing and data 

interpretation processes, to depict in a probabilistic way the 

direction and magnitude of the discrepancy between 

“decisions that would be made if the true state of a 

population was known” and the “decisions that are actually 

made upon the analysis and interpretation of surveillance 

data”. The proposed framework provides a theoretical 

basis for standardised quantitative evaluation of the 

effectiveness of surveillance systems. We illustrate such 

approaches using a hypothetical surveillance system aimed 

at monitoring the prevalence of an endemic disease. 

Finally we discuss the potential of this new approach for 

harmonising cost-effectiveness analyses.  

 

Introduction 

Surveillance has been defined as “the systematic 

measurement, collection, collation, analysis, interpretation 

and timely dissemination of animal health and welfare data 

from defined populations whose data are essential for 

describing health hazard occurrence and to contribute to 

the planning, implementation and evaluation of risk 

mitigation actions” [1]. As a consequence, surveillance 

systems can be viewed as observation systems whose 

function is to provide evidence to inform decisions 

regarding disease management [2,3]. Therefore, 

evaluations of the effectiveness of a surveillance system 

should be done in relation to the decisions made upon the 

analysis and interpretation of the data generated by 

surveillance [3]: does the surveillance system generate data 

that lead to a decision that would have been made if the 

true state of the population was known?  

The data produced by a surveillance system are generated 

through reporting, sampling, sample testing processes and 

diagnosing. Reporting and sampling are rarely exhaustive 

and may be non-representative. Moreover, diagnostic and 

sample testing procedures may misclassify a fraction of the 

tested samples. Therefore, data generated by surveillance 

systems are most of the time imperfect. The 

characterization of the epidemiological status of the 

population produced through the analysis and 

interpretation of such data nonetheless informs decisions.  

To date, the evaluation of the effectiveness of surveillance 

systems was done by estimating a wide range of measures 

such as the number of days from introduction to detection, 

the number of infected units detected by the surveillance, 

the sensitivity of the detection, etc. The use of these 

various variables limits standardisation and comparability 

between surveillance programmes. In this paper, we 

propose a rational probabilistic approach that overcomes 

these limitations. 

The objectives of the present paper are 1) to present a 

conceptual framework defining a generic measure of 

effectiveness, 2) to illustrate how this measure can be used 

with the example of a hypothetical surveillance system 

aimed at monitoring prevalence of an endemic disease and 

3) to discuss how this measure can be extended to other 

surveillance objectives and used by decision-makers when 

designing surveillance systems. 

 

Conceptual framework to estimate the effectiveness of a 

surveillance system 

We define the effectiveness of a surveillance system as its 

ability to generate an observation of the population that is 

in accordance with the true disease status of the population 

so that the decisions that are made based on this 

observation are those that would have been made if the 

true status of the population was known. Therefore, in 

order to draw a conceptual framework for the assessment 

of the effectiveness of surveillance systems, we need to 

clearly define a population state variable that is relevant 

depending on the objectives of the surveillance and the 

observations generated by the surveillance system. Once 

these are defined, effectiveness measures can be estimated. 

The state variable 

The relevant state variable is defined according to the 

objectives of the surveillance. A surveillance system 

aiming at monitoring prevalence may have a different state 

variable than a surveillance system aiming at early 

detection. The state variable can be categorised into 

different subsets based on the decision rules related to 

interventions. For example, the simplest categorisation 

would be: 

- S+: the subset of possible states that would 

require to make a decision about a possible 

intervention, 

- S-: the subset of possible states that would not 

require to make a decision 

For a surveillance system aiming at monitoring prevalence, 

the state variable is the true prevalence of the disease of 



 

interest. S+ can be defined as the subset of states where the 

true prevalence is above a pre-defined threshold (the status 

is non-acceptable), and S- as the subset of states where the 

true prevalence is below this threshold (the status is 

acceptable). State subsets can also be defined for other 

surveillance objectives (e.g., early detection, demonstrating 

freedom from a disease or case finding). 

The observation 

A surveillance system produces data that is analysed and 

interpreted in order to evaluate the state of the population. 

Here, “observation” refers to the evaluation of the state of 

the population based on the data produced by the system. 

The “observation” results from the generation of 

surveillance data and the analysis and interpretation of 

these data to inform a decision based on the same 

thresholds used to define the subsets of states. As for the 

state variable, possible observations can be categorised 

into different subsets based on the decision rules. In the 

simple example introduced above, observations can be 

categorised into the two following subsets: 

- O+: the subset of possible observations that lead 

to the making of a decision about a possible 

intervention, 

- O-: the subset of possible observations that do not 

lead to the making of a decision. 

There should be an equal number of subsets of 

observations and of subsets of states. For the surveillance 

system aiming at monitoring prevalence, O+ could be 

defined as the subset of observations where the apparent 

prevalence is above a pre-defined threshold (the same 

threshold that has been used to define the subsets of states) 

and O- as the subset of observations where the apparent 

prevalence is below this threshold. This example is clearly 

over-simplistic, but we believe this is necessary to 

understand the logic of this rationale. Further complexity 

will be discussed later. 

The effectiveness measures 

When S+, S-, O+ and O- are specified, two types of errors 

can be defined in the line of statistical or diagnostic tests 

(Table 1). 

 

Table 1: Classification of the different types of errors for a 

surveillance system 

S+ S-

O+ Type I error

O- Type II error  
 

In our example, the risk of type I error is thus Pr(O+|S-), 

i.e. the probability that the surveillance system produces 

information that lead to the making of a decision when the 

real state of the population would not require it. Type I 

errors imply that decisions are unnecessarily made leading 

to unnecessary expenditures. 

Similarly, the risk of type II error is defined as Pr(O-|S+), 

i.e. the probability that the surveillance system produces 

information that does not lead to the making of a decision 

although the true state of the population would require it. 

Type II errors imply that no decisions are made despite a 

genuine health issue occurring. 

We propose to evaluate the effectiveness of a given 

surveillance system by estimating the probability of a type 

I error and the probability of a type II error.  

Estimating the effectiveness measures 

To estimate the probabilities of type I and type II errors, 

three different steps are required: 

1) To describe the thresholds determining the 

subsets of true population states associated with 

different decisions to be made,  

2) To describe the systematic data collection 

processes that give rise to the surveillance data, 

including sampling, reporting, diagnostic and 

testing, 

3) To describe the data analysis and interpretation 

processes that determine the subsets of 

observations associated with the different 

decisions to be made. 

Given these three steps have been completed, the 

probabilities of type I and type II errors can be estimated 

either analytically (for simple case studies) or using 

simulations (in more complex situations). 

 

Application to a hypothetical surveillance system 

aiming at monitoring prevalence 

This conceptual approach is illustrated with a hypothetical 

surveillance system aiming at monitoring the prevalence of 

a disease to inform decision-makers who will then use this 

information to decide whether or not to implement an 

intervention (for this example, we assumed that no other 

source of information is used to make this decision). We 

followed the three steps defined in the previous paragraph. 

Step 1: The designers of the system and the decision-

makers are assumed to have defined two subsets of 

population states: 

- S+ is the subset of the states of the population 

where the true prevalence p is above or equal to 

0.2. The decision to implement interventions is 

required. 

- S- is the subset of the states of the population 

where the true prevalence p is below 0.2. The 

decision to implement interventions is not 

required. 

Step 2: The surveillance system to be evaluated is 

described as precisely as possible: it consists of a random 

sampling of n=100 population units thorough the year (the 

population is considered infinite) and testing of these units 

using a perfect diagnostic test. 

Step 3: Investigating the data analysis and interpretation 

processes that lead to decisions regarding the 

implementation of interventions: the decision to implement 

interventions is made whenever the proportion of positive 

samples (np/n) the previous year is above or equal to 0.2. 

Therefore: 

- O+ is the subset of observations where the 

proportion of positive tests the previous year is 

above or equal to 0.2. The decision to implement 

interventions is made. 

- O- is the subset of observations where the 

proportion of positive tests the previous year is 

below 0.2. The decision to implement 

interventions is not made. 



 

Evaluating the effectiveness of this surveillance system 

requires estimating the probability of making an 

appropriate or an inappropriate decision regarding the 

implementation of interventions. The quantities of interest 

are therefore: 

- Pr(O-|S-)= Pr(np<0.2n|p<0.2) 

- Pr(O+|S+)= Pr(np≥0.2n|p≥0.2) 

- Pr(O-|S+)= Pr(np<0.2n|p≥0.2) 

- Pr(O+|S-)= Pr(np≥0.2n|p<0.2) 

For this hypothetical situation, computing these quantities 

can be done analytically because the probability 

distribution of np is known: it is a binomial distribution of 

parameter n (the sample size) and p (the real prevalence of 

the disease in the population). So Pr(X≤np<Y|p,n) can be 

computed for any value of X, Y, p and n, and this 

probability can be plotted against p (Figure 1). 

In Figure 1, the black curve represents, for any value of p 

(true prevalence), the probability that, in view of the data 

produced by the surveillance system, the decision-makers 

decide to not implement interventions. The red curve 

represents its complement, i.e. the probability, for any 

value of p, to decide to implement interventions. 

As shown in Figure 1, for a prevalence slightly below 0.2 

(situation requiring no interventions), the hypothetical 

surveillance system generates data that, given the decision 

rule used, leads to an inappropriate decision (implementing 

interventions) with a probability of around 0.4 (probability 

of type I error). For a prevalence around 0.5, the 

interventions will be implemented with a probability of 

almost 100% (appropriate decision), and therefore the 

probability of type II error is almost null. 

 

 
Figure 1: Probability of not implementing interventions 

(black curve) and of implementing interventions (red 

curve) as a function of the prevalence of the disease for 

our hypothetical surveillance system. The dashed grey line 

represents the threshold defined by decision makers to 

distinguish the states of the focal population not requiring 

(on the left hand side of the line) and requiring (on the 

right hand side of the line) the implementation of 

interventions. 

 

Discussion 

This paper presents a sound theoretical framework to 

estimate the effectiveness of surveillance systems.  

This conceptual framework was illustrated with an 

unsophisticated surveillance system to monitor prevalence 

and a simple decision rule for the implementation of 

intervention if the prevalence increased above a certain 

threshold. It has to be highlighted that this approach can 

easily be extended to more complex surveillance systems 

(several surveillance components, non-random sampling, 

imperfect diagnostic tests, etc.) and to more complex 

decision rules (where data interpretation accounts for 

imperfect test, where the decision is based on the precision 

of the estimation, where more than two subsets of states 

and observation are considered, etc.) Resolving these 

problems analytically soon becomes intractable. Using 

simulations provides a convenient and flexible alternative. 

Note that making the decision to implement control 

measures is likely to involve other types of considerations 

than only the surveillance data. Therefore the decision rule 

used in the example is likely to be over-simplistic but it 

was chosen for the sake of clarity. As soon as the decision 

process can be formalised (whatever its complexity), it can 

be incorporated within this framework. 

Our application estimated the probabilities of type I and 

type II errors for a given surveillance system. We argue 

that this approach can be extended to compare alternative 

surveillance systems, with the objective to identify the 

most effective one. For example, the same approach has 

been used to assess the effectiveness of a surveillance 

system similar to the one described above with the 

exception that it samples 1000 units instead of 100. For a 

real prevalence slightly below 0.2, it was shown that such a 

surveillance system is associated with a much lower 

probability of type I error (it collapses to almost zero).  

In this paper, we developed the framework for a 

surveillance system aiming at monitoring prevalence. The 

same approach can be generalized to surveillance systems 

with other surveillance objectives (early detection, freedom 

from disease and case finding). For example, this concept 

can be used to estimate the probability that a given 

surveillance system aiming at demonstrating freedom of a 

given disease will lead to the decision that the territory is 

free of the disease although it should not (type I error), and 

the probability that the surveillance system cannot 

demonstrate freedom although the territory is actually free 

(type II error). 

The concept proposed provides a foundation for a 

standardised use of effectiveness in cost-effectiveness 

analysis.  The next step is to assess the economic 

consequences for each type of error by estimating disease 

costs and surveillance and intervention costs. Therefore, 

for a given context and surveillance objective, the 

effectiveness of the system (as defined in this paper) and 

its economic value can be estimated, and sensitivity 

analyses can be used to establish which changes in the 

surveillance system allow increasing or decreasing the 

probabilities of type I and type II errors. 
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