

The surveillance landscape in Europe

Barbara Häsler, B. Bisdorff, A. Brouwer, A. Comin, F.C. Dórea, J. Drewe, J. Hardstaff, L. Hoinville, A. Lindberg, S. Molia, M. Peyre, J. Pinto-Ferreira, V. Rodríguez-Prieto, J. Rushton, G. van Schaik, B. Schauer, C. Staubach, N. Taylor, M. Vicente, G. Witteveen, other RISKSUR consortium members, D. Pfeiffer

One World, One Health, One Surveillance?

One Surveillance, One Budget?

Which surveillance option is the most **effective?** Which surveillance option is the most **costeffective?** Who pays, who gains? Who should bear the costs? Who benefits from surveillance? Is surveillance a public or private good?

Questions often encountered

Is surveillance **worth** it? Should we do surveillance?

Is my surveillance **good** (enough)? How can I **improve** my surveillance?

Where should we focus our surveillance efforts?

Economics of surveillance

- Economic efficiency resource allocation
 - Optimisation, acceptability, least-cost criteria
- Comparison of benefits or outcomes (e.g. production losses avoided, human disease avoided, ability to trade, reputation) with costs of surveillance

Prioritisation

Understanding of the system and human behaviour
(→ risk factors)

Aim and objectives

To characterise the context within which the development of animal health surveillance and evaluation frameworks and tools occurs

By describing

- existing public and private surveillance systems (including sources of finance) for all species
- animal populations, trade flows and critical infrastructure
- how decisions about the allocation of resources to animal health surveillance are currently made

Data collection

 13 Countries: Belgium, Bulgaria, Czech Republic, Denmark, France, Germany, Great Britain, Ireland, Italy, the Netherlands, Spain, Sweden, and Switzerland

Sources:

- Scientific literature, internet pages, government reports, national statistics
- EU Trade Control and Expert System, Eurostat
- Interviews with decision-makers in 7 countries

Surveillance data:

- Public and private surveillance systems, all threats, types and species
- Data collated to characterise these systems
- Population and economic data: livestock and bee holdings in Europe, human and animal populations, gross domestic product, farm values
- Infrastructure data: slaughterhouses, livestock markets, traders, transporters, feedmills, laboratories, veterinarians

Surveillance system components: Purpose and species

- 798 enhanced passive and active SSC recorded
- Main purposes:
 - 1) Early detection/warning
 - 2) To detect cases to allow specific action to be taken to facilitate control or eradication
 - Surveillance to substantiate freedom from disease or infection
- Most frequently targeted species:
 - 1) Cattle (23%)
 - 2) Pigs (16%)
 - 3) Poultry (14%)

Surveillance system components: hazards

- Most frequently recorded:
 - Salmonellosis (16%)
 - Brucellosis (10%)
 - Avian influenza (8%)
 - Classical swine fever (4%)
 - Bovine tuberculosis (4%)
 - Bluetongue (4%)
 - Bovine spongiform encephalitis (2.5%)

How much does surveillance cost in these countries?

Surveillance system components: Expenditures

Species	C1	C2	С3	C4	C5	C 6	C7	C8	С9	C10	C11	C12	C13
All species		0/1	0/1				1/6			0/2	0/1	0/1	
Avian ^a						0/1	2/2			0/1			0/2
Bees		0/1									1/2		
Cattle	2/7	1/20	8/28	7/12	5/11	12/23	7/29	0/1	3/4	0/13	1/11	2/13	0/15
Equidae		0/7	0/6	1/3		0/2					2/11	0/6	
Fish													
Insect vector	171	/798	com	non	ents	: wit	h cos	st e	stin	nate	= 2	1%	
Multi		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0011	pon	onic				U u u	iau	<i>y</i> – <i>L</i>	170	
Other			0/10	0/1		2/2					4/26	3/12	
Pigs	0/2	2/24	0/12	2/7	0/6	6/18	6/14		0/1	0/2	0/15	3/16	0/11
Poultry	0/8	5/18	5/10	0/1	0/4	3/16	6/9		0/1	0/12	0/14	4/10	0/9
Ruminants		1/3	2/4		3/3	0/1	0/2			0/1	0/3	1/2	
Small	0/2	2/10	0/17	2/6	2/4	7/0	A /O		1 /1	0/0	2/17	E /10	0/2
Ruminants	0/2	2/10	0/1/	2/0	2/4	//0	4/0		1/1	0/0	2/1/	5/10	0/5
Wildlife		3/15	2/5	1/3	0/1	5/7	1/1			0/5	0/9	0/6	
TOTAL	2/19	15/121	26/109	14/37	10/32	38/88	32/78	0/3	5/8	0/52	11/117	18/94	0/40

Surveillance system components: Private or public funding

Surveillance system components: Private or public funding – poultry only

Veterinary Record (2014) 174, 16

J.A. Drewe, B. Häsler, J. Rushton, K. D. C. Stärk

Comparison to economic value

- Surveillance expenditure in proportion to the economic contribution of each species to the UK economy?
- Surveillance expenditure by species compared to the economic value of each livestock sector

Livestock sector	UK population size in 2011
Cattle	9,933,000
Sheep and goats	31,722,000
Pigs	4,441,000
Poultry	162,551,000

Decision-maker interviews

- Multitude of private-public partnerships
- Single most important decision criteria influencing surveillance
 - International legal requirement (including EU obligations)
 - National legal requirement
 - Cost-benefit measure, cost-effectiveness measure, and expected costs
 - Disease situation in the country
 - Impact related criteria
- Various needs for further information identified (e.g. epidemiological and economic information)

Opportunities

- Cost data an important element in understanding and informing resource allocation
- Data not easily accessible or available
- Practical cost calculation tool for surveillance
- Comparison of the economic value of livestock units to on-going surveillance efforts and the associated resource use
- Surveillance focusing on novel areas, in particular health-event based surveillance
- Making use of private-public partnerships

Acknowledgments

- This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No 310806
- Leverhulme Centre for Integrative Research on Agriculture and Health
- Data providers
- RISKSUR consortium

Royal Veterinary College <u>www.rvc.ac.uk</u>

Dr Barbara Häsler: <u>bhaesler@rvc.ac.uk</u> Prof. Dirk Pfeiffer: <u>pfeiffer@rvc.ac.uk</u> Prof. Jonathan Rushton: <u>jrushton@rvc.ac.uk</u> Dr Betty Bisdorff: <u>bbisdorff@rvc.ac.uk</u> Dr Timothee Vergne: <u>tvergne@rvc.ac.uk</u> Dr Julian Drewe: <u>jdrewe@rvc.ac.uk</u> Nick Taylor: <u>nick.taylor@panveeru.net</u>

